Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 10.199
Filtrar
1.
Cell Commun Signal ; 22(1): 212, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566100

RESUMO

The pathogenesis of Parkinson's disease (PD) is strongly associated with neuroinflammation, and type I interferons (IFN-I) play a crucial role in regulating immune and inflammatory responses. However, the specific features of IFN in different cell types and the underlying mechanisms of PD have yet to be fully described. In this study, we analyzed the GSE157783 dataset, which includes 39,024 single-cell RNA sequencing results for five PD patients and six healthy controls from the Gene Expression Omnibus database. After cell type annotation, we intersected differentially expressed genes in each cell subcluster with genes collected in The Interferome database to generate an IFN-I-stimulated gene set (ISGs). Based on this gene set, we used the R package AUCell to score each cell, representing the IFN-I activity. Additionally, we performed monocle trajectory analysis, and single-cell regulatory network inference and clustering (SCENIC) to uncover the underlying mechanisms. In silico gene perturbation and subsequent experiments confirm NFATc2 regulation of type I interferon response and neuroinflammation. Our analysis revealed that microglia, endothelial cells, and pericytes exhibited the highest activity of IFN-I. Furthermore, single-cell trajectory detection demonstrated that microglia in the midbrain of PD patients were in a pro-inflammatory activation state, which was validated in the 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model as well. We identified transcription factors NFATc2, which was significantly up-regulated and involved in the expression of ISGs and activation of microglia in PD. In the 1-Methyl-4-phenylpyridinium (MPP+)-induced BV2 cell model, the suppression of NFATc2 resulted in a reduction in IFN-ß levels, impeding the phosphorylation of STAT1, and attenuating the activation of the NF-κB pathway. Furthermore, the downregulation of NFATc2 mitigated the detrimental effects on SH-SY5Y cells co-cultured in conditioned medium. Our study highlights the critical role of microglia in type I interferon responses in PD. Additionally, we identified transcription factors NFATc2 as key regulators of aberrant type I interferon responses and microglial pro-inflammatory activation in PD. These findings provide new insights into the pathogenesis of PD and may have implications for the development of novel therapeutic strategies.


Assuntos
Interferon Tipo I , Neuroblastoma , Doença de Parkinson , Camundongos , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Doenças Neuroinflamatórias , Células Endoteliais/metabolismo , NF-kappa B/metabolismo , Análise de Célula Única , Camundongos Endogâmicos C57BL
2.
Mymensingh Med J ; 33(2): 470-475, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38557528

RESUMO

Parkinson's disease is a debilitating neurodegenerative disease for which there is no cure. It is characterized by bradykinesia, resting tremor, rigidity and postural instability, due to impairment of function of the basal ganglia which is involved in the coordination of body movement. Neuro-inflammation is pathogenesis of development in early Parkinson's disease. High-sensitivity C-reactive protein level is a useful non-specific biochemical marker of inflammation. Objective of this study was to analyze the symptoms of Parkinson disease and it's correlation with high sensitive CRP. Seventy-six Parkinson's disease patients were enrolled in this Cross-sectional observational study that was attended in the Department of Neurology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Bangladesh from September 2014 to March 2016. Analysis of the symptoms of Parkinson disease and it's correlation with high sensitive CRP were done among these patients. This study was performed on 76 Parkinson disease patients with presented early with symptoms. a positive and highly significant correlation were seen in between duration of tremor and High sensitivity CRP (r=0.430, p<0.001) and between duration of bradykinesia and High sensitivity CRP (r=0.426, p<0.001) which indicate increase duration causes increase level of high-sensitivity C-reactive protein value. The neuro-inflammation plays a significant role in the pathogenesis of symptoms development in early Parkinson's disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Proteína C-Reativa , Doenças Neurodegenerativas/complicações , Hipocinesia/complicações , Estudos Transversais , Inflamação/complicações
3.
CNS Neurosci Ther ; 30(4): e14706, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584347

RESUMO

OBJECTIVE: This study aimed to investigate whether spontaneous brain activity can be used as a prospective indicator to identify cognitive impairment in patients with Parkinson's disease (PD). METHODS: Resting-state functional magnetic resonance imaging (RS-fMRI) was performed on PD patients. The cognitive level of patients was assessed by the Montreal Cognitive Assessment (MoCA) scale. The fractional amplitude of low-frequency fluctuation (fALFF) was applied to measure the strength of spontaneous brain activity. Correlation analysis and between-group comparisons of fMRI data were conducted using Rest 1.8. By overlaying cognitively characterized brain regions and defining regions of interest (ROIs) based on their spatial distribution for subsequent cognitive stratification studies. RESULTS: A total of 58 PD patients were enrolled in this study. They were divided into three groups: normal cognition (NC) group (27 patients, average MoCA was 27.96), mild cognitive impairment (MCI) group (21 patients, average MoCA was 23.52), and severe cognitive impairment (SCI) group (10 patients, average MoCA was 17.3). It is noteworthy to mention that those within the SCI group exhibited the most advanced chronological age, with an average of 74.4 years, whereas the MCI group displayed a higher prevalence of male participants at 85.7%. It was found hippocampal regions were a stable representative brain region of cognition according to the correlation analysis between the fALFF of the whole brain and cognition, and the comparison of fALFF between different cognitive groups. The parahippocampal gyrus was the only region with statistically significant differences in fALFF among the three cognitive groups, and it was also the only brain region to identify MCI from NC, with an AUC of 0.673. The paracentral lobule, postcentral gyrus was the region that identified SCI from NC, with an AUC of 0.941. The midbrain, hippocampus, and parahippocampa gyrus was the region that identified SCI from MCI, with an AUC of 0.926. CONCLUSION: The parahippocampal gyrus was the potential brain region for recognizing cognitive impairment in PD, specifically for identifying MCI. Thus, the fALFF of parahippocampal gyrus is expected to contribute to future study as a multimodal fingerprint for early warning.


Assuntos
Disfunção Cognitiva , Doença de Parkinson , Humanos , Masculino , Idoso , Feminino , Doença de Parkinson/complicações , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Estudos Prospectivos , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/patologia , Imageamento por Ressonância Magnética/métodos , Hipocampo/patologia
4.
Sci Adv ; 10(14): eadl3406, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38569030

RESUMO

Amyloid aggregation of α-synuclein (αSN) protein amplifies the pathogenesis of neurodegenerative diseases (NDs) such as Parkinson's disease (PD). Consequently, blocking aggregation or redirecting self-assembly to less toxic aggregates could be therapeutic. Here, we improve brain-specific nanocarriers using a hybrid of exosomes (Ex) from human umbilical cord mesenchymal stem cells (hUC MSCs) and nanoliposomes containing baicalein (Ex-NLP-Ba) and oleuropein (Ex-NLP-Ole). The hybrids contained both lipid membranes, Ex proteins, and baicalein or oleuropein. Fluorescence resonance energy transfer analysis confirmed their proper integration. The hybrids reduced the extent of αSN fibrillation and interfered with secondary nucleation and disaggregation. They not only reduced αSN pathogenicity but also enhanced drug internalization into cells, surpassing the efficacy of NLP alone, and also crossed the blood-brain barrier in a cellular model. We conclude that Ex can be successfully extracted and efficiently merged with NLPs while retaining its original properties, demonstrating great potential as a theranostic drug delivery vehicle against NDs like PD.


Assuntos
Exossomos , Doença de Parkinson , Humanos , alfa-Sinucleína/metabolismo , Exossomos/metabolismo , Doença de Parkinson/patologia , Glucosídeos Iridoides
5.
J Neuroinflammation ; 21(1): 93, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622654

RESUMO

The neuroinflammatory process in synucleinopathies of the aging population such as Parkinson's disease (PD) and dementia with Lewy bodies (DLB) involves microglial activation as well as infiltration of the CNS by T cells and natural killer T cells (NKTs). To evaluate the potential of targeting NKT cells to modulate neuroinflammation, we treated α-syn transgenic (tg) mice (e.g.: Thy1 promoter line 61) with an antibody against CD1d, which is a glycoprotein expressed in antigen presenting cells (APCs). CD1d-presented lipid antigens activate NKT cells through the interaction with T cell receptor in NKTs, resulting in the production of cytokines. Thus, we hypothesized that blocking the APC-NKT interaction with an anti-CD1d antibody might reduce neuroinflammation and neurodegeneration in models of DLB/PD. Treatment with the anti-CD1d antibody did not have effects on CD3 (T cells), slightly decreased CD4 and increased CD8 lymphocytes in the mice. Moreover, double labeling studies showed that compared to control (IgG) treated α-syn tg mice, treatment with anti-CD1d decreased numbers of CD3/interferon γ (IFN γ)-positive cells, consistent with NKTs. Further double labeling studies showed that CD1d-positive cells co-localized with the astrocytes marker GFAP and that anti-CD1d antibody reduced this effect. While in control α-syn tg mice CD3 positive cells were near astrocytes, this was modified by the treatment with the CD1d antibody. By qPCR, levels of IFN γ, CCL4, and interleukin-6 were increased in the IgG treated α-syn tg mice. Treatment with CD1d antibody blunted this cytokine response that was associated with reduced astrocytosis and microgliosis in the CNS of the α-syn tg mice treated with CD1d antibody. Flow cytometric analysis of immune cells in α-syn tg mice revealed that CD1d-tet + T cells were also increased in the spleen of α-syn tg mice, which treatment with the CD1d antibody reduced. Reduced neuroinflammation in the anti-CD1d-treated α-syn tg mice was associated with amelioration of neurodegenerative pathology. These results suggest that reducing infiltration of NKT cells with an antibody against CD1d might be a potential therapeutical approach for DLB/PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Camundongos , Animais , alfa-Sinucleína/genética , Corpos de Lewy/patologia , Doenças Neuroinflamatórias , Doença de Parkinson/patologia , Camundongos Transgênicos , Imunoterapia/métodos , Citocinas , Imunoglobulina G
6.
Transl Neurodegener ; 13(1): 22, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622720

RESUMO

The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.


Assuntos
Doença de Parkinson , Sistema Renina-Angiotensina , Animais , Humanos , Sistema Renina-Angiotensina/fisiologia , Doença de Parkinson/patologia , Dopamina , Pressão Sanguínea , Receptor Tipo 1 de Angiotensina/metabolismo , Antagonistas de Receptores de Angiotensina/farmacologia , Inibidores da Enzima Conversora de Angiotensina/uso terapêutico , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Angiotensinas/farmacologia , Encéfalo/metabolismo
7.
J Parkinsons Dis ; 14(2): 227-244, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38427502

RESUMO

Parkinson's disease (PD) is an increasingly common neurodegenerative disease. It has been suggested that the etiology of idiopathic PD is complex and multifactorial involving environmental contributions, such as viral or bacterial infections and microbial dysbiosis, in genetically predisposed individuals. With advances in our understanding of the gut-brain axis, there is increasing evidence that the intestinal microbiota and the mammalian immune system functionally interact. Recent findings suggest that a shift in the gut microbiome to a pro-inflammatory phenotype may play a role in PD onset and progression. While there are links between gut bacteria, inflammation, and PD, the bacterial products involved and how they traverse the gut lumen and distribute systemically to trigger inflammation are ill-defined. Mechanisms emerging in other research fields point to a role for small, inherently stable vesicles released by Gram-negative bacteria, called outer membrane vesicles in disease pathogenesis. These vesicles facilitate communication between bacteria and the host and can shuttle bacterial toxins and virulence factors around the body to elicit an immune response in local and distant organs. In this perspective article, we hypothesize a role for bacterial outer membrane vesicles in PD pathogenesis. We present evidence suggesting that these outer membrane vesicles specifically from Gram-negative bacteria could potentially contribute to PD by traversing the gut lumen to trigger local, systemic, and neuroinflammation. This perspective aims to facilitate a discussion on outer membrane vesicles in PD and encourage research in the area, with the goal of developing strategies for the prevention and treatment of the disease.


Assuntos
Microbioma Gastrointestinal , Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/patologia , Membrana Externa Bacteriana/patologia , Inflamação/complicações , Microbioma Gastrointestinal/fisiologia , Mamíferos
8.
Medicine (Baltimore) ; 103(12): e37538, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38518035

RESUMO

In the elderly population, Parkinson's Disease (PD) is the second most common neurodegenerative disorder and is associated with morphological changes in the basal ganglia, especially the substantia nigra (SN). This study aimed to evaluate the volume and signal intensity (SI) of SN using Magnetic Resonance Imaging (MRI) to detect structural changes and investigate the relationship between the onset side and disease severity of PD. Clinical features and imaging data of 58 patients with PD were retrospectively analyzed from their medical records. Axial T2-weighted fluid-attenuated inversion recovery (FLAIR) sequences of 3 Tesla (T) MRIs were used for the measurements. The right and left SN volumes and SI measurements were calculated in duplicate by 2 blinded and qualified neuroradiologists. The side of disease onset, disease duration, levodopa equivalent daily dose, Movement Disorder Society-sponsored Unified Parkinson Disease Rating Scale (MDS-UPDRS III) motor score, and modified Hoehn and Yahr (H&Y) scale scores were recorded and compared with SN volume and SI measurements. No statistically significant difference was found between the disease onset side and contralateral SN volume or SI measurements (P > .05). Despite high inter- and intra-rater reliability rates, there was no significant difference in the volume and SI of the contralateral SN according to H&Y stages (P > .05). Furthermore, SN volume and SI measurements were not significantly correlated with disease duration and MDS-UPDRS III motor score (P > .05). SN volume and SI values measured using axial FLAIR 3T MRI are not correlated with the side of onset or disease severity in PD. New imaging methods are required to detect preclinical or early-stage PD.


Assuntos
Doença de Parkinson , Humanos , Idoso , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/patologia , Estudos Retrospectivos , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética , Substância Negra/diagnóstico por imagem
9.
Sci Rep ; 14(1): 7494, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553518

RESUMO

Brain structural changes in Parkinson's disease (PD) are progressive throughout the disease course. Changes in surface morphology with disease progression remain unclear. This study aimed to assess the volumetric and shape changes of the subcortical nuclei during disease progression and explore their association with clinical symptoms. Thirty-four patients and 32 healthy controls were enrolled. The global volume and shape of the subcortical nuclei were compared between patients and controls at baseline. The volume and shape changes of the subcortical nuclei were also explored between baseline and 2 years of follow-up. Association analysis was performed between the volume of subcortical structures and clinical symptoms. In patients with PD, there were significantly atrophied areas in the left pallidum and left putamen, while in healthy controls, the right putamen was dilated compared to baseline. The local morphology of the left pallidum was correlated with Mini Mental State Examination scores. The left putamen shape variation was negatively correlated with changes in Unified Parkinson's Disease Rating Scale PART III scores. Local morphological atrophy of the putamen and pallidum is an important pathophysiological change in the development of PD, and is associated with motor symptoms and cognitive status in patients with PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/patologia , Imageamento por Ressonância Magnética , Encéfalo/patologia , Putamen/patologia , Progressão da Doença , Atrofia/patologia
10.
J Neuroinflammation ; 21(1): 80, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555419

RESUMO

Neuroinflammation is one of the core pathological features of Parkinson's disease (PD). Innate immune cells play a crucial role in the progression of PD. Microglia, the major innate immune cells in the brain, exhibit innate immune memory effects and are recognized as key regulators of neuroinflammatory responses. Persistent modifications of microglia provoked by the first stimuli are pivotal for innate immune memory, resulting in an enhanced or suppressed immune response to second stimuli, which is known as innate immune training and innate immune tolerance, respectively. In this study, LPS was used to establish in vitro and in vivo models of innate immune memory. Microglia-specific Hif-1α knockout mice were further employed to elucidate the regulatory role of HIF-1α in innate immune memory and MPTP-induced PD pathology. Our results showed that different paradigms of LPS could induce innate immune training or tolerance in the nigrostriatal pathway of mice. We found that innate immune tolerance lasting for one month protected the dopaminergic system in PD mice, whereas the effect of innate immune training was limited. Deficiency of HIF-1α in microglia impeded the formation of innate immune memory and exerted protective effects in MPTP-intoxicated mice by suppressing neuroinflammation. Therefore, HIF-1α is essential for microglial innate immune memory and can promote neuroinflammation associated with PD.


Assuntos
Microglia , Doença de Parkinson , Animais , Camundongos , Modelos Animais de Doenças , Neurônios Dopaminérgicos , Hipóxia/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Doenças Neuroinflamatórias , Doença de Parkinson/patologia , Imunidade Treinada
11.
J Pineal Res ; 76(2): e12948, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488331

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons and aggregation of α-synuclein (α-syn). Ferroptosis, a form of cell death induced by iron accumulation and lipid peroxidation, is involved in the pathogenesis of PD. It is unknown whether melatonin receptor 1 (MT1) modulates α-syn and ferroptosis in PD. Here, we used α-syn preformed fibrils (PFFs) to induce PD models in vivo and in vitro. In PD mice, α-syn aggregation led to increased iron deposition and ferroptosis. MT1 knockout exacerbated these changes and resulted in more DA neuronal loss and severe motor impairment. MT1 knockout also suppressed the Sirt1/Nrf2/Ho1/Gpx4 pathway, reducing resistance to ferroptosis, and inhibited expression of ferritin Fth1, leading to more release of ferrous ions. In vitro experiments confirmed these findings. Knockdown of MT1 enhanced α-syn PFF-induced intracellular α-syn aggregation and suppressed expression of the Sirt1/Nrf2/Ho1/Gpx4 pathway and Fth1 protein, thereby aggravating ferroptosis. Conversely, overexpression of MT1 reversed these effects. Our findings reveal a novel mechanism by which MT1 activation prevents α-syn-induced ferroptosis in PD, highlighting the neuroprotective role of MT1 in PD.


Assuntos
Ferroptose , Melatonina , Doença de Parkinson , Camundongos , Animais , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Melatonina/farmacologia , Receptor MT1 de Melatonina/metabolismo , Sirtuína 1/metabolismo , Neurônios Dopaminérgicos , Ferro/metabolismo
12.
J Neurosci Res ; 102(3): e25322, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38520160

RESUMO

Emerging evidence has implicated the orexin system in non-motor pathogenesis of Parkinson's disease. It has also been suggested the orexin system is involved in the modulation of motor control, further implicating the orexin system in Parkinson's disease. Parkinson's disease is the second most common neurodegenerative disease with millions of people suffering worldwide with motor and non-motor symptoms, significantly affecting their quality of life. Treatments are based solely on symptomatic management and no cure currently exists. The orexin system has the potential to be a treatment target in Parkinson's disease, particularly in the non-motor stage. In this review, the most current evidence on the orexin system in Parkinson's disease and its potential role in motor and non-motor symptoms of the disease is summarized. This review begins with a brief overview of Parkinson's disease, animal models of the disease, and the orexin system. This leads into discussion of the possible roles of orexin neurons in Parkinson's disease and levels of orexin in the cerebral spinal fluid and plasma in Parkinson's disease and animal models of the disease. The role of orexin is then discussed in relation to symptoms of the disease including motor control, sleep, cognitive impairment, psychological behaviors, and the gastrointestinal system. The neuroprotective effects of orexin are also summarized in preclinical models of the disease.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/patologia , Orexinas/farmacologia , Qualidade de Vida , Modelos Animais de Doenças
13.
Hum Brain Mapp ; 45(5): e26668, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520378

RESUMO

Parkinson's disease (PD) often shows disrupted brain connectivity and autonomic dysfunctions, progressing alongside with motor and cognitive decline. Recently, PD has been linked to a reduced sensitivity to cardiac inputs, that is, cardiac interoception. Altogether, those signs suggest that PD causes an altered brain-heart connection whose mechanisms remain unclear. Our study aimed to explore the large-scale network disruptions and the neurophysiology of disrupted interoceptive mechanisms in PD. We focused on examining the alterations in brain-heart coupling in PD and their potential connection to motor symptoms. We developed a proof-of-concept method to quantify relationships between the co-fluctuations of brain connectivity and cardiac sympathetic and parasympathetic activities. We quantified the brain-heart couplings from electroencephalogram and electrocardiogram recordings from PD patients on and off dopaminergic medication, as well as in healthy individuals at rest. Our results show that the couplings of fluctuating alpha and gamma connectivity with cardiac sympathetic dynamics are reduced in PD patients, as compared to healthy individuals. Furthermore, we show that PD patients under dopamine medication recover part of the brain-heart coupling, in proportion with the reduced motor symptoms. Our proposal offers a promising approach to unveil the physiopathology of PD and promoting the development of new evaluation methods for the early stages of the disease.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Mapeamento Encefálico , Frequência Cardíaca , Imageamento por Ressonância Magnética , Encéfalo , Dopaminérgicos
14.
Acta Neuropathol ; 147(1): 54, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472443

RESUMO

Rare and common GBA variants are risk factors for both Parkinson's disease (PD) and dementia with Lewy bodies (DLB). However, the degree to which GBA variants are associated with neuropathological features in Lewy body disease (LBD) is unknown. Herein, we assessed 943 LBD cases and examined associations of 15 different neuropathological outcomes with common and rare GBA variants. Neuropathological outcomes included LBD subtype, presence of a high likelihood of clinical DLB (per consensus guidelines), LB counts in five cortical regions, tyrosine hydroxylase immunoreactivity in the dorsolateral and ventromedial putamen, ventrolateral substantia nigra neuronal loss, Braak neurofibrillary tangle (NFT) stage, Thal amyloid phase, phospho-ubiquitin (pS65-Ub) level, TDP-43 pathology, and vascular disease. Sequencing of GBA exons revealed a total of 42 different variants (4 common [MAF > 0.5%], 38 rare [MAF < 0.5%]) in our series, and 165 cases (17.5%) had a copy of the minor allele for ≥ 1 variant. In analysis of common variants, p.L483P was associated with a lower Braak NFT stage (OR = 0.10, P < 0.001). In gene-burden analysis, presence of the minor allele for any GBA variant was associated with increased odds of a high likelihood of DLB (OR = 2.00, P < 0.001), a lower Braak NFT stage (OR = 0.48, P < 0.001), a lower Thal amyloid phase (OR = 0.55, P < 0.001), and a lower pS65-Ub level (ß: -0.37, P < 0.001). Subgroup analysis revealed that GBA variants were most common in LBD cases with a combination of transitional/diffuse LBD and Braak NFT stage 0-II or Thal amyloid phase 0-1, and correspondingly that the aforementioned associations of GBA gene-burden with a decreased Braak NFT stage and Thal amyloid phase were observed only in transitional or diffuse LBD cases. Our results indicate that in LBD, GBA variants occur most frequently in cases with greater LB pathology and low AD pathology, further informing disease-risk associations of GBA in PD, PD dementia, and DLB.


Assuntos
Doença de Alzheimer , Doença por Corpos de Lewy , Doença de Parkinson , Humanos , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia , Doença de Alzheimer/patologia , Substância Negra/patologia , Emaranhados Neurofibrilares/patologia
15.
JAMA ; 331(15): 1298-1306, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38506839

RESUMO

Importance: Finding a reliable diagnostic biomarker for the disorders collectively known as synucleinopathies (Parkinson disease [PD], dementia with Lewy bodies [DLB], multiple system atrophy [MSA], and pure autonomic failure [PAF]) is an urgent unmet need. Immunohistochemical detection of cutaneous phosphorylated α-synuclein may be a sensitive and specific clinical test for the diagnosis of synucleinopathies. Objective: To evaluate the positivity rate of cutaneous α-synuclein deposition in patients with PD, DLB, MSA, and PAF. Design, Setting, and Participants: This blinded, 30-site, cross-sectional study of academic and community-based neurology practices conducted from February 2021 through March 2023 included patients aged 40 to 99 years with a clinical diagnosis of PD, DLB, MSA, or PAF based on clinical consensus criteria and confirmed by an expert review panel and control participants aged 40 to 99 years with no history of examination findings or symptoms suggestive of a synucleinopathy or neurodegenerative disease. All participants completed detailed neurologic examinations and disease-specific questionnaires and underwent skin biopsy for detection of phosphorylated α-synuclein. An expert review panel blinded to pathologic data determined the final participant diagnosis. Exposure: Skin biopsy for detection of phosphorylated α-synuclein. Main Outcomes: Rates of detection of cutaneous α-synuclein in patients with PD, MSA, DLB, and PAF and controls without synucleinopathy. Results: Of 428 enrolled participants, 343 were included in the primary analysis (mean [SD] age, 69.5 [9.1] years; 175 [51.0%] male); 223 met the consensus criteria for a synucleinopathy and 120 met criteria as controls after expert panel review. The proportions of individuals with cutaneous phosphorylated α-synuclein detected by skin biopsy were 92.7% (89 of 96) with PD, 98.2% (54 of 55) with MSA, 96.0% (48 of 50) with DLB, and 100% (22 of 22) with PAF; 3.3% (4 of 120) of controls had cutaneous phosphorylated α-synuclein detected. Conclusions and Relevance: In this cross-sectional study, a high proportion of individuals meeting clinical consensus criteria for PD, DLB, MSA, and PAF had phosphorylated α-synuclein detected by skin biopsy. Further research is needed in unselected clinical populations to externally validate the findings and fully characterize the potential role of skin biopsy detection of phosphorylated α-synuclein in clinical care.


Assuntos
Pele , Sinucleinopatias , alfa-Sinucleína , Idoso , Feminino , Humanos , Masculino , alfa-Sinucleína/análise , Biópsia , Estudos Transversais , Doença por Corpos de Lewy/diagnóstico , Doença por Corpos de Lewy/patologia , Atrofia de Múltiplos Sistemas/diagnóstico , Atrofia de Múltiplos Sistemas/patologia , Doença de Parkinson/diagnóstico , Doença de Parkinson/patologia , Sinucleinopatias/diagnóstico , Sinucleinopatias/patologia , Fosforilação , Pele/química , Pele/patologia , Insuficiência Autonômica Pura/diagnóstico , Insuficiência Autonômica Pura/patologia , Reprodutibilidade dos Testes , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Método Simples-Cego , Estudos Prospectivos
16.
Nat Commun ; 15(1): 2750, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553463

RESUMO

The defining feature of Parkinson disease (PD) and Lewy body dementia (LBD) is the accumulation of alpha-synuclein (Asyn) fibrils in Lewy bodies and Lewy neurites. Here we develop and validate a method to amplify Asyn fibrils extracted from LBD postmortem tissue samples and use solid state nuclear magnetic resonance (SSNMR) studies to determine atomic resolution structure. Amplified LBD Asyn fibrils comprise a mixture of single protofilament and two protofilament fibrils with very low twist. The protofilament fold is highly similar to the fold determined by a recent cryo-electron microscopy study for a minority population of twisted single protofilament fibrils extracted from LBD tissue. These results expand the structural characterization of LBD Asyn fibrils and approaches for studying disease mechanisms, imaging agents and therapeutics targeting Asyn.


Assuntos
Doença por Corpos de Lewy , Doença de Parkinson , Humanos , alfa-Sinucleína/química , Microscopia Crioeletrônica , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Doença de Parkinson/patologia
17.
Nat Commun ; 15(1): 2677, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538591

RESUMO

α-Synuclein forms amyloid fibrils that are critical in the progression of Parkinson's disease and serves as the pathological hallmark of this condition. Different posttranslational modifications have been identified at multiple sites of α-synuclein, influencing its conformation, aggregation and function. Here, we investigate how disease-related phosphorylation and O-GlcNAcylation at the same α-synuclein site (S87) affect fibril structure and neuropathology. Using semi-synthesis, we obtained homogenous α-synuclein monomer with site-specific phosphorylation (pS87) and O-GlcNAcylation (gS87) at S87, respectively. Cryo-EM revealed that pS87 and gS87 α-synuclein form two distinct fibril structures. The GlcNAc situated at S87 establishes interactions with K80 and E61, inducing a unique iron-like fold with the GlcNAc molecule on the iron handle. Phosphorylation at the same site prevents a lengthy C-terminal region including residues 73 to 140 from incorporating into the fibril core due to electrostatic repulsion. Instead, the N-terminal half of the fibril (1-72) takes on an arch-like fibril structure. We further show that both pS87 and gS87 α-synuclein fibrils display reduced neurotoxicity and propagation activity compared with unmodified α-synuclein fibrils. Our findings demonstrate that different posttranslational modifications at the same site can produce distinct fibril structures, which emphasizes link between posttranslational modifications and amyloid fibril formation and pathology.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Fosforilação , Doença de Parkinson/patologia , Processamento de Proteína Pós-Traducional , Amiloide/metabolismo , Ferro
18.
Tissue Cell ; 87: 102328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38387425

RESUMO

Parkinson's disease (PD) is one of the most common neurodegenerative conditions. Alpha-synuclein deposition, Lewy bodies (LBs) formation, disruption of the autophagic machinery, apoptosis of substantia nigra dopaminergic neurons, oxidative stress, and neuroinflammation are all pathologic hallmarks of PD. The leaves of the stinging Nettle (Urtica dioica L.) have a long history as an herbal cure with antioxidant, anti-inflammatory, anti-cancer, immunomodulatory, and neuroprotective properties. The current study aims for the first time to investigate the role of Nettle supplementation on Rotenone-induced PD. Rats were divided into five groups; a Saline control, Nettle control (100 mg/kg/day), Rotenone control (2 mg/kg/day), Rotenone + Nettle (50 mg /kg/day), and Rotenone + Nettle (100 mg/kg). After four weeks, the rats were examined for behavioral tests. The midbrains were investigated for histopathological alteration and immunohistochemical reaction for Tyrosine hydroxylase in the dopaminergic neurons, α-synuclein for Lewy bodies, caspase 3 for apoptotic neurons, LC3 and P62 for autophagic activity. Midbrain homogenates were examined for oxidative stress markers. mRNA expression of TNFα and Il6; inflammatory markers, Bcl-2, BAX and Caspase 3; apoptosis markers, were detected in midbrains. The results showed that Nettle caused recovery of midbrain dopaminergic neurons, by inhibiting apoptosis, inflammation, and oxidative stress and by restoring the autophagic machinery with clearance of α-synuclein deposits. We can conclude that Nettle is a potentially effective adjuvant in the treatment of Parkinson's disease.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Urtica dioica , Ratos , Animais , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Urtica dioica/química , Urtica dioica/metabolismo , alfa-Sinucleína/metabolismo , alfa-Sinucleína/farmacologia , Rotenona/toxicidade , Caspase 3/metabolismo , Estresse Oxidativo , Fármacos Neuroprotetores/farmacologia
19.
Philos Trans R Soc Lond B Biol Sci ; 379(1899): 20220384, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38368930

RESUMO

The vacuolar protein sorting 35 ortholog (VPS35) gene encodes a core component of the retromer complex essential for the endosomal sorting and recycling of transmembrane cargo. Endo-lysosomal pathway deficits are suggested to play a role in the pathogenesis of neurodegenerative diseases, including Parkinson's disease (PD). Mutations in VPS35 cause a late-onset, autosomal dominant form of PD, with a single missense mutation (D620N) shown to segregate with disease in PD families. Understanding how the PD-linked D620N mutation causes retromer dysfunction will provide valuable insight into the pathophysiology of PD and may advance the identification of therapeutics. D620N VPS35 can induce LRRK2 hyperactivation and impair endosomal recruitment of the WASH complex but is also linked to mitochondrial and autophagy-lysosomal pathway dysfunction and altered neurotransmitter receptor transport. The clinical similarities between VPS35-linked PD and sporadic PD suggest that defects observed in cellular and animal models with the D620N VPS35 mutation may provide valuable insights into sporadic disease. In this review, we highlight the current knowledge surrounding VPS35 and its role in retromer dysfunction in PD. We provide a critical discussion of the mechanisms implicated in VPS35-mediated neurodegeneration in PD, as well as the interplay between VPS35 and other PD-linked gene products. This article is part of a discussion meeting issue 'Understanding the endo-lysosomal network in neurodegeneration'.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Animais , Humanos , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Transporte Proteico/genética , Mutação
20.
Eur J Med Res ; 29(1): 114, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336827

RESUMO

BACKGROUND: Several studies have indicated that skin holds promise as a potential sample for detecting pathological α-Syn and serving as a diagnostic biomarker for α-synucleinopathies. Despite reports in Chinese PD patients, comprehensive research on skin α-Syn detection using RT-QuIC is lacking. OBJECTIVE: This study aimed to evaluate the diagnostic performance of skin samples using RT-QuIC from PD patients in the Chinese population. METHODS: Patients with sporadic PD and controls were included according to the British PD Association Brain Bank diagnostic criteria. The seeding activity of misfolded α-Syn in these skin samples was detected using the RT-QuIC assay after protein extraction. Biochemical and morphological analyses of RT-QuIC products were conducted by atomic force microscopy, transmission electron microscopy, Congo red staining, and dot blot analysis. RESULT: 30 patients clinically diagnosed with PD and 28 controls with non-α-synucleinopathies were included in this study. 28 of 30 PD patients demonstrated positive α-Syn seeding activity by RT-QuIC assay. In contrast, no α-Syn seeding activity was detected in the 28 control samples, with an overall sensitivity and specificity of 93.3% and 100%, respectively (P < 0.001). Biochemical characterization of the RT-QuIC product indicated fibrillary α-Syn species in PD-seeded reactions, while control samples failed in the conversion of recombinant α-Syn substrate. CONCLUSION: This study applied RT-QuIC technology to identify misfolded α-Syn seeding activity in skin samples from Chinese PD patients, demonstrating high specificity and sensitivity. Skin α-Syn RT-QuIC is expected to be a reliable approach for the diagnosis of PD.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/análise , alfa-Sinucleína/química , alfa-Sinucleína/metabolismo , Doença de Parkinson/diagnóstico , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Encéfalo/metabolismo , Biomarcadores/metabolismo , China
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...